特邀研究论文

激光写光电子学进展

Yb3+/Tm3+共掺磷酸盐玻璃的上转换发光性能

张芳腾^{1,2*},马琳¹,曾佑君¹,刘关玉¹,聂兆刚^{1,2**} ¹广东工业大学物理与光电工程学院,广东广州 510006; ²广东工业大学广东省信息光子技术重点实验室,广东 广州 510006

摘要 采用高温熔融法制备 Yb³⁺/Tm³⁺共掺的磷酸盐玻璃,探讨了 Tm³⁺摩尔分数和玻璃基体中 Te⁴⁺摩尔分数对玻璃上转 换发光性能的影响。吸收光谱表明,玻璃中的 Yb³⁺和 Tm³⁺在 300~1450 nm 波长的吸收位置互不干扰。研究了制备的玻璃 样品在 980 nm 波长激光二极管泵浦下的上转换发光性能。结果表明,Yb³⁺/Tm³⁺在 476 nm(${}^{1}G_{4} \rightarrow {}^{3}H_{6}$)、650 nm(${}^{1}G_{4} \rightarrow {}^{3}F_{4}$) 和 793 nm(${}^{3}H_{4} \rightarrow {}^{3}H_{6}$)三个位置有上转换发光峰。其中,793 nm 的近红外发光峰最强,476 nm 的发光峰强度次之,650 nm 的 发光峰强度最弱。通过调整 Tm³⁺的摩尔分数和玻璃基质中 Te⁴⁺的摩尔分数可以实现对上述三个发光峰强度的调制。 关键词 材料;磷酸盐玻璃;上转换发光;铥镱共掺;组分调控

中图分类号 O482.31;TQ171 文献标志码 A

DOI: 10.3788/LOP202259.1516009

Upconversion Luminescence Properties of Yb³⁺/Tm³⁺ Co-Doped Phosphate Glass

Zhang Fangteng^{1,2*}, Ma Lin¹, Zeng Youjun¹, Liu Guanyu¹, Nie Zhaogang^{1,2**}

¹School of Physics & Photoelectric Engineering, Guangdong University of Technology, Guangzhou 510006,

Guangdong, China;

²Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangdong University of Technology, Guangzhou 510006, Guangdong, China

Abstract In this paper, Yb^{3+}/Tm^{3+} co-doped phosphate glass is prepared using a high-temperature melting method, and the effects of Tm^{3+} mole fraction and Te^{4+} mole fraction in the glass matrix on the upconversion luminescence properties of the glass are discussed. The absorption spectrum shows that the absorption positions of Yb^{3+} and Tm^{3+} ions in the glass do not interfere with each other at the wavelength of 300-1450 nm. The upconversion luminescence properties of the asprepared glass samples under 980 nm wavelength laser diode pumping are investigated. The results indicate that Yb^{3+}/Tm^{3+} has upconversion luminescence peaks at 476 nm (${}^{1}G_{4} \rightarrow {}^{3}H_{6}$), 650 nm (${}^{1}G_{4} \rightarrow {}^{3}F_{4}$), and 793 nm (${}^{3}H_{4} \rightarrow {}^{3}H_{6}$), among which the near-infrared luminescence peak at 793 nm is the strongest. The luminescence intensity at 476 nm is the next highest and the lowest at 650 nm. The intensity of the three abovementioned luminescent peaks can be tuned by adjusting the Tm^{3+} mole fraction and the Te^{4+} mole fraction in the glass matrix.

Key words materials; phosphate glass; up-conversion luminescence; thulium ytterbium co-doping; component control

1引言

发光现象的存在让世界色彩纷呈,人们对于发光 现象的研究也一直充满热情。近年来,借助稀土离子 丰富的能级结构及其之间的恰当搭配,人们利用长波 长光作为激发源,在各种材料上实现了短波长的光发 射,即上转换发光^[12]。通常以近红外光作为激发光, 使上转换发光材料被激发后发射出可见光或紫外光。 这种发光方式在生物传感与成像、光电探测、能源利用 和三维显示等众多领域体现出巨大的应用潜力,成为 相关领域的研究热点^[38]。目前,研究人员已经开发出 各种上转换发光材料,包括玻璃、微晶玻璃和纳米材 料^[9-12]。其中,玻璃材料因其独特的优点而备受关注, 如形成波长范围大、性质可连续调控和易塑形。

目前研究较多的玻璃及其微晶玻璃体系主要有锗 酸盐、碲酸盐和卤氧化物等^[13-16],关于磷酸盐玻璃的研 究较少,原因是其具有较高的声子能量。但在稀土离 子掺杂的玻璃基质中,磷酸盐玻璃具有稀土相容性高、

收稿日期: 2022-05-05; 修回日期: 2022-05-23; 录用日期: 2022-06-15

基金项目: 广东省自然科学基金(2020A1515011530,2021A1515012049)、广东工业大学引进人才科研启动项目(220413666) 通信作者: *zhang. ft@gdut. edu. cn; **zgnie@gdut. edu. cn

特邀研究论文

增益高、生产方法简单以及价格低等优点。通过在磷酸盐玻璃基质中掺杂高摩尔分数的稀土离子,已经研制出各种性能优异的激光器^[17]。如在磷酸盐玻璃中构建恰当的稀土离子组合,通过高摩尔分数掺杂仍有望实现较强的上转换发光。在各种上转换发光材料中: Yb³⁺通常被选为敏化剂,原因是其只有³F_{5/2}和³F_{7/2}两个能级,对980 nm附近波段的光有良好的吸收效果; Tm³⁺因其丰富的能级结构可实现蓝光、红光和近红外的荧光发射。因此,通过Yb³⁺和Tm³⁺的共掺,利用 Yb³⁺和Tm³⁺之间的能量传递,有望制备高稀土掺杂摩尔分数的磷酸盐上转换发光玻璃。

本文采用高温熔融法制备了Yb³⁺/Tm³⁺共掺的磷酸盐玻璃,在980 nm激光二极管(LD)泵浦下实现了476、650、793 nm波长的上转换发光,并研究了Tm³⁺摩尔分数变化和基质中Te⁴⁺掺杂摩尔分数对上转换发光性能的影响。结果表明,在一定范围内通过改变Tm³⁺的摩尔分数和基质中Te⁴⁺的掺杂摩尔分数可以调控三个上转换发光峰之间的相对强度。该研究结果有望为开发更好的上转换发光磷酸盐玻璃体系提供理论依据。

2 实验原理

实验制备的铥镱共掺磷酸盐上转换发光玻璃组成为(55-x)P₂O₅-xTeO₂-5WO₃-10Al₂O₃-12BaO-5Na₂O-10ZnO-2.5Yb₂O₃-yTm₂O₃,其中,55-x,x,5、10、12、5、10、2.5、y分别为对应组分所占的摩尔分数。首先,将各原料称量好后倒入玛瑙研钵中研磨搅拌使其充分混合,再将研磨均匀的配合料转移到氧化铝坩埚中。然后,在1400℃高温箱式电阻炉中熔融2h,将玻璃熔体倒在预热至300℃的光滑铜板上形成玻璃块。最后,将玻璃块移到450℃的马弗炉中退火4h,随炉冷却至室温,取出并切割打磨成形状规则、表面光滑的透明磷酸盐上转换发光玻璃。

实验玻璃样品采用 PerkinElmer-Lambda 35型分 光光度计测试吸收光谱,测量范围为 300~1450 nm, 取值间隔为1 nm。上转换荧光光谱采用共聚焦显微 拉曼光谱仪 LabRAM HR Evolution 测试,用 980 nm LD作为光源,检测波长范围为 350~850 nm。所有测 试均在室温条件下进行。

3 分析与讨论

图 1 为玻璃中 TeO₂ 摩尔分数分别为2.5%、 5.0%、10.0%的样品吸收光谱。其中,横坐标为波长 λ,纵坐标为吸光度(Absorbance)。可以发现,3条吸收 曲线的吸收峰几乎完全一致,5个较弱的吸收峰由 Tm³⁺吸收引起,分别位于361、476、693、802、1205 nm 处,对应Tm³⁺的基态³H₆到激发态¹D₂、¹G₄、³F_{2.3}、³H₄、 ³H₅的能级跃迁^[18]。此外,图1还出现了一个很强的吸

第 59 卷 第 15 期/2022 年 8 月/激光与光电子学进展

图 1 Yb³⁺/Tm³⁺共掺杂磷酸盐玻璃的吸收光谱 Fig. 1 Absorption spectra of Yb³⁺/Tm³⁺ co-doped phosphate glasses

收带,位于910~980 nm 附近,且在915 nm 和975 nm 处分别出现次强峰和最强峰,该吸收带归因于Yb³⁺的 基态²F_{7/2}到激发态²F_{5/2}的能级跃迁^[19]。研究表明,该 吸收带的形成是由Yb³⁺的基态²F_{7/2}和激发态²F_{5/2}能级 在玻璃内部晶体场作用下发生Stark分裂,分别形成上 下两个态簇(上态簇²F_{5/2}和下态簇²F_{7/2}),两条态簇之 间的能级差约为10000 cm^{-1[20]}。每个态簇均存在数个 Stark能级,不同Stark能级之间的跃迁导致了吸收带, 而975 nm 和915 nm 的吸收峰是由²F_{7/2}谱项的最低 Stark能级向²F_{7/2}各个Stark能级跃迁引起的。Tm³⁺和 Yb³⁺各个吸收峰的强度变化不明显,峰位无变化,表明 Te⁴⁺摩尔分数的变化对于Yb³⁺和Tm³⁺吸收的影响不 大。从吸收图谱中可以发现,用980 nm激光激发样品 时仅存在Yb³⁺吸收,不存在Tm³⁺吸收。

不同 Tm³⁺掺杂摩尔分数的样品玻璃在 980 nm LD泵浦下的上转换荧光光谱如图2(a)所示。其中, 横坐标为波长λ,纵坐标为发光强度。从图 2(a)可以 发现,所有样品均出现了三个明显的发射带:最强发射 带的中心波长约为793 nm,对应于Tm³⁺的³H₄到³H₆ 能级的跃迁发射,属于近红外发光:其余两个较弱的发 射带中心波长分别位于 476 nm 和 650 nm 附近,分别 源于 Tm^{3+} 的 $^{1}G_{4}$ 和 $^{3}F_{4}$ 能级到 $^{3}H_{6}$ 能级的跃迁发射,属 于可见光波段的蓝光和红光发射。从图2(b)可以发 现,476 nm 发射峰的强度随着 Tm3+掺杂摩尔分数的 升高先增大后减小再略有上升:当Tm³⁺的掺杂摩尔 分数为0.3%时,476 nm 发光峰的强度最大;当 Tm³⁺ 的掺杂摩尔分数增加到0.5%时,476 nm的发光峰强 度开始变小;当Tm³⁺的掺杂摩尔分数为0.9%时, 476 nm 发光峰的强度又略有增加。从图 2(c)可以发 现,650 nm 发光峰的强度随 Tm³⁺掺杂摩尔分数的变 化规律与476 nm 发光峰几乎完全一致。从图 2(d)可 以发现,793 nm 附近的近红外发射峰强度先增加后减 小,最强发光峰对应的Tm³⁺掺杂摩尔分数为0.5%。 一般认为,能量传递是导致浓度猝灭的主要原因:当 Tm³⁺的掺杂摩尔分数较低时,Tm³⁺与Tm³⁺之间的距

图 2 不同 Tm³⁺掺杂摩尔分数 Yb³⁺/Tm³⁺共掺杂磷酸盐玻璃的上转换发光性能。(a)上转换发光光谱;(b) 476 nm 发光峰的强度; (c)650 nm 发光峰的强度;(d)793 nm 发光峰的强度

Fig. 2 Upconversion luminescence properties of Yb³⁺/Tm³⁺ co-doped phosphate glasses with different Tm³⁺ doping mole fractions.
(a) Upconversion emission spectrum; (b) intensity of emission peak at 476 nm; (c) intensity of emission peak at 650 nm;
(d) intensity of emission peak at 793 nm

离较远,此时Tm³⁺与Tm³⁺之间的能量传递可以忽略; 随着Tm³⁺摩尔分数的增加,Tm³⁺与Yb³⁺之间的距离 变小,Yb³⁺→Tm³⁺能量传递速率变大,上转换发光增 强;当Tm³⁺的掺杂摩尔分数超过一定值时,Tm³⁺与 Tm³⁺之间的交叉弛豫几率增大,上能级布居粒子数减 少,导致跃迁发射减弱。但图 2 中 476 nm 和 650 nm 发 光峰随 Tm³⁺掺杂摩尔分数变化的趋势与 793 nm 发光 峰不完全同步,这表明可通过改变 Tm³⁺的掺杂摩尔分 数改变不同发光峰之间的相对强度。

图 3 为玻璃基质中不同 Te⁴⁺掺杂摩尔分数在

图 3 Te⁴⁺掺杂 Yb³⁺/Tm³⁺共掺杂磷酸盐玻璃的上转换发光。(a)上转换发光光谱;(b) 476 nm 发光峰的强度;(c)650 nm 发光峰的 强度;(d)793 nm 发光峰的强度

特邀研究论文

980 nm LD 泵浦下的上转换发射光谱。从图 3(a)可以 发现,各个样品的发射峰位和半峰全宽几乎没有发生 变化,这意味着Te⁴⁺掺杂摩尔分数的变化对上转换发 射峰位和半峰全宽的影响极小。从图3(b)可以发现, 476 nm 发射峰的强度随 Te4+掺杂摩尔分数的升高先 快速增大后略有减小再快速增大。当Te⁴⁺的掺杂摩 尔分数为15.0%时,476 nm发光峰的强度最大,且没 有出现饱和迹象。但更高的 Te4+摩尔分数容易导致 玻璃分相和析晶,不易制备出均匀透明的玻璃样品。 从图 3(c)可以发现,650 nm 发光峰的强度随 Te⁴⁺掺杂 摩尔分数的变化规律与476 nm 发光峰完全一致。从 图 3(d)可以发现,793 nm 附近的近红外发射峰随 Te⁴⁺ 掺杂摩尔分数的升高单调上升。上述实验结果表明, 提高玻璃基质中的 Te⁴⁺摩尔分数有利于提高 Yb³⁺/ Tm³⁺共掺杂磷酸盐玻璃的上转换发光效率。原因是 碲酸盐组分的声子能量远低于磷酸盐组分的声子能 量。因此,用碲酸盐组分取代磷酸盐有利于降低体系 的声子能量,提升能量传递效率,增大辐射跃迁概率, 从而提高上转换发光效率。需要指出的是,当Te4+的 掺杂摩尔分数在 5.0%~10.0% 范围时, 476 nm 和 650 nm 发光峰强度的变化趋势与 793 nm 发光峰变化 趋势相反。原因可能是476 nm 和650 nm 光子发射需 要三个 980 nm 红外光子的参与, 而 793 nm 光子发射 只需要两个980 nm 红外光子的参与^[21]。此外, Te⁴⁺的 引入在降低玻璃基质声子能量的同时,也改变了玻璃 基质的网络结构,在一定范围内可能会对不同的上转 换发光路径造成不同的影响,但具体影响还有待进一 步研究。

近年来,上转换发光机理的研究得到了飞速发展, 目前已经明确的上转换发光途径主要包括基态吸收 (GSA)、激发态吸收(ESA)、能量转移(ET)、多声子 弛豫(MR)和交叉弛豫(CR)等^[2,12]。基于样品的吸收 和发射光谱,根据Yb3+和Tm3+的能级图和能量匹配 机制,对样品在980 nm LD 泵浦下产生的473、650、 793 nm 上转换发光可能的机理进行解释,其原理如 图4所示。由于Tm³⁺不能对980 nm 光子产生吸收,对 泵浦光产生吸收的只能是Yb3+。Yb3+首先通过吸收 一个 980 nm 波长的光子从基态²F_{7/2}跃迁到激发 态²F_{5/2},该过程属于GSA。此时只有Yb³⁺处于激发 态,几乎所有的Tm³⁺均处于基态,但从发射光谱中观 察到的三个发光峰明显来源于Tm³⁺的能级跃迁发射。 这表明 Yb³⁺和 Tm³⁺之间必然存在能量传递。根据能 级之间的匹配度,能量传递的第一阶段很可能是处在 激发态 ${}^{2}F_{5/2}$ 能级的 Yb³⁺回到基态 ${}^{2}F_{7/2}$ 时,通过能量转 移(ET1)的方式把能量传递给处于基态的Tm³⁺,使其 被激发到³H₅能级。该过程中³H₅和³F₄能级相近(相差 约2000 cm⁻¹),部分处于³H₅能级的电子会通过多声子 弛豫(MR1)跃迁到³F₄能级。由于Tm³⁺的³F₂和³F₄能

级差与 Yb^{3+} 的 $^{2}F_{5/2}$ 和 $^{2}F_{7/2}$ 能级差相近,部分 Yb^{3+} 将通 过能量传递(ET2)使Tm³⁺中处在³F₄能级的激发态电 子通过激发态吸收(ESA1)跃迁到³F₂能级,处于³F₂能 级的电子再通过多声子弛豫(MR2)回到³H₄能级。此 时:一部分处于³H₄激发态能级的Tm³⁺将以光辐射的 方式回到基态³H₆,并发射出一个波长约为793 nm的 近红外光子;另一部分处于³H₄能级的Tm³⁺有可能继 续通过激发态吸收(ESA2)跃迁到¹G₄能级。原因 $B^{3}H_{4}$ 和¹G₄之间的能级差也与Yb³⁺的²F_{5/2}和²F_{7/2}之间 的能级差相近,因此所需能量仍可能由Yb³⁺通过能量 传递方式(ET3)提供。处于激发态¹G₄的Tm³⁺有两种 可能的跃迁途径回到更低能级:一种是通过辐射跃迁 直接回到基态³H。发射一个476 nm 左右的光子;另一 种是通过辐射跃迁到³F₄并发射一个650 nm 左右的光 子。苏俊等^[20-21]在Yb³⁺/Tm³⁺共掺的硅酸盐玻璃中也 观察到类似现象,同时证实发射一个476 nm或650 nm 的光子需要三个980 nm 红外光子的参与, 而发射一个 793 nm的光子则需要两个980 nm 红外光子的参与。

4 结 论

制备了均匀透明的Yb³⁺和Tm³⁺共掺杂磷酸盐玻 璃的上转换发光玻璃。研究结果表明,所制备的玻璃 在 980 nm LD 泵浦下同时出现了476 nm 的蓝光、 650 nm 的红光和793 nm 的近红外上转换发光。其中, 476 nm 的蓝光和650 nm 的红光的发光强度在Tm³⁺掺 杂摩尔分数为0.3%时最大,而793 nm 近红外光的发 光强度在Tm³⁺掺杂摩尔分数为0.5%时最大。在 0.3%~0.9%范围内调整Tm³⁺的掺杂摩尔分数可以 调控三个发光峰之间的相对强度。提高磷酸盐玻璃基 质中TeO₂组分的含量可以大幅提升上转换发光的强 度,最高添加比例可达15.0%。在5.0%~10.0%范 围内调整Te⁴⁺的掺杂摩尔分数同样可以调控三个发 光峰之间的相对强度。

参考文献

- [1] Pollnau M, Gamelin D R, Lüthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems[J]. Physical Review B, 2000, 61(5): 3337-3346.
- [2] 陆冉华,李安明,杨杰杰,等.上转换光致发光的原理及应用进展[J].科技创新与应用,2022,12(1):34-36,39.
 Lu R H, Li A M, Yang J J, et al. Principle and application progress of upconversion photoluminescence
 [J]. Technology Innovation and Application, 2022, 12 (1): 34-36, 39.
- [3] Bai X, Yang Z W, Zhan Y H, et al. Novel strategy for designing photochromic ceramic: reversible upconversion luminescence modification and optical information storage application in the PbWO₄:Yb³⁺, Er³⁺ photochromic ceramic[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 21936-21943.
- [4] Zhang J, Ji B W, Chen G B, et al. Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application[J]. Inorganic Chemistry, 2018, 57(9): 5038-5047.
- [5] Liu Q, Feng W, Yang T S, et al. Upconversion luminescence imaging of cells and small animals[J]. Nature Protocols, 2013, 8(10): 2033-2044.
- [6] Duan C C, Liang L E, Li L, et al. Recent progress in upconversion luminescence nanomaterials for biomedical applications[J]. Journal of Materials Chemistry B, 2018, 6(2): 192-209.
- [7] Chen G Y, Qiu H L, Prasad P N, et al. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics[J]. Chemical Reviews, 2014, 114(10): 5161-5214.
- [8] Maciel G S, Biswas A, Kapoor R, et al. Blue cooperative upconversion in Yb³⁺-doped multicomponent sol-gelprocessed silica glass for three-dimensional display[J]. Applied Physics Letters, 2000, 76(15): 1978-1980.
- [9] Fang Z J, Chen Z, Peng W C, et al. Phase-separation engineering of glass for drastic enhancement of upconversion luminescence[J]. Advanced Optical Materials, 2019, 7(8): 1801572.
- [10] Xing J H, Shang F, Chen G H. Upconversion luminescence of Yb³⁺/Er³⁺ co-doped NaSrPO₄ glass ceramic for optical thermometry[J]. Ceramics International, 2021, 47(6): 8330-8337.
- [11] Liu X G, Yan C H, Capobianco J A. Photon upconversion nanomaterials[J]. Chemical Society Reviews, 2015, 44(6): 1299-1301.

- [12] 谢荧玲, 沈博, 周兵帅, 等. 稀土上转换发光纳米材料及 生物传感研究进展[J]. 中国激光, 2020, 47(2): 0207017.
 Xie Y L, Shen B, Zhou B S, et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 2020, 47 (2): 0207017.
- [13] Qiu J B, Jiao Q, Zhou D C, et al. Recent progress on upconversion luminescence enhancement in rare-earth doped transparent glass-ceramics[J]. Journal of Rare Earths, 2016, 34(4): 341-367.
- [14] Tsang W S, Yu W M, Mak C L, et al. Evidence of the influence of phonon density on Tm³⁺ upconversion luminescence in tellurite and germanate glasses[J]. Journal of Applied Physics, 2002, 91(4): 1871-1874.
- [15] 吴中立,吴红梅,唐立丹,等.Tm³⁺/Yb³⁺共掺氟氧化 物碲酸盐玻璃的上转换发光及光学温度传感[J].光子学 报,2017,46(9):0916003.
 Wu Z L, Wu H M, Tang L D, et al. Up-conversion light-emitting and optical temperature sensing for Tm³⁺/ Yb³⁺ codoped oxyfluoride tellurite glass[J]. Acta Photonica Sinica, 2017, 46(9): 0916003.
- [16] Viswanath C S D, Babu P, Martín I R, et al. Nearinfrared and upconversion luminescence of Tm³⁺ and Tm³⁺/Yb³⁺-doped oxyfluorosilicate glasses[J]. Journal of Non-Crystalline Solids, 2019, 507: 1-10.
- [17] Zhang L Y, Hu L L, Jiang S B. Progress in Nd³⁺, Er³⁺, and Yb³⁺ doped laser glasses at Shanghai Institute of Optics and Fine Mechanics[J]. International Journal of Applied Glass Science, 2018, 9(1): 90-98.
- [18] Wu Z L, Zhang Y P, Bao D M, et al. Optical transition properties, energy transfer upconversion luminescence, and temperature-sensing characteristics of Tm³⁺/Yb³⁺ codoped oxyfluoride tellurite glass[J]. Journal of Luminescence, 2022, 245: 118766.
- [19] Chen D Q, Wang Y S, Yu Y L, et al. Intense ultraviolet upconversion luminescence from Tm^{3+}/Yb^{3+} : β -YF₃ nanocrystals embedded glass ceramic[J]. Applied Physics Letters, 2007, 91(5): 051920.
- [20] 苏俊,张振华,赵会峰,等.Yb³⁺/Tm³⁺共掺的硅酸盐玻璃上转换发光性能[J].发光学报,2016,37(5):526-531.
 Su J, Zhang Z H, Zhao H F, et al. Up-conversion luminescence properties of Yb³⁺/Tm³⁺ co-doped silicate glasses[J]. Chinese Journal of Luminescence, 2016, 37 (5): 526-531.
- [21] 苏俊.稀土掺杂硅酸盐玻璃发光性能的研究[D].海口: 海南大学, 2016: 57-59.
 Su J. Study on luminescence properties of rare earth doped silicate glass[D]. Haikou: Hainan University, 2016: 57-59.